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Abstract. q-integration is defined for the complex quantum plane. 'Illhe existence of classical 
and Grassmanian limits of q-integration is proved. Quantum versions of Cauchy's and 
Stokes' theorems are formulated. 

1. Introduction 

The concept of integration plays a very important role in mathematical physics, the 

algebras and C*-algebras) the problem was intensively investigated by pure algebraists 
[9 ,  lo], mathematical physicists [7 ,8]  and physicists [3]. From the algebraic point of 
view [7-lo], integration connected with the invariant measure (Haar measure) is the 
most interesting. However, at the Hopf algebra level the existence of the invariant 
measure is proved only for commutative (co-semisimple) and for finite-dimensional 
Hopf algebras which are useless in the construction of quantum groups. At the 
C*-algebra level, Woronowicz [8] proved the existence of the Haar measure for 
compact quantum groups. 

In this paper we deform Riemann's integral on the quantum complex plane (which 
is a non-compact, non-commutative, infinite-dimensional algebra). We show that our 
deformation is continuous with respect to the changing of deformation parameters. 
We also show that the classical Riemann's integral and Grassmanian Berezin's integral 
are two limit cases of our deformation. 

In the last section of this paper we discuss briefly some properties of q-integrals, 
i.e. we show that complex q-integrals fulfil Stokes' and Cauchy's theorems. Finally, 
we define the deformed (quantum) square measure. 
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2. Differential calculus on Manin's plane 

It is known [ I ]  that one can construct two distinct families of differential calculus on 
Manin's plane. The quantum (Manin's) plane @:" [2] is a graded module over C 
generated by two elements x, y obeying the defining relation xy = qyx, where q is a 
parameter. It has a bialgebra structure, given by the relations A ( x )  =xOx, A(y)  =yo 
l + x O y ,  E ( x ) =  1, s ( y ) = O ,  where A is the usual coproduct and E is the counit. To 
get a differential calculus we introduce a linear differential operator d, which is nilpotent 
and obeys the Leibniz rule with gradation, and we demand the differential calculus to 
be scale invariant. The full algebra 
sp = A'&@ ~ ' s p  where = Cilo, A09p 4 A'& A2.$ 
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is then an associative graded algebra generated by x, y and dx, dy. We assume that 
dx A dx as well as dy A dy is equal to zero. We also define (right) partial derivatives 
in the directions x and y of any function f(x, y) E C:'" (f(x, y )  is understood as a 
formal power series of variables x and y with coefficients from C) by the equation 
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d f b ,  y) = dx D d x ,  y)+dy D,.f(x, y). 
With these assumptions, using the consistency relations [ 5 ]  and assuming that the 

equation df(x, y )  = 0 implies f(x, y )  = c ( c  E C), we get two families of differential 
calculus: 

Family I, 

XY = qyx 
x dx = p  dxx  x dy = q dy x 

dx = q-' a x  1 y y dy = r dyy 
dx Ady = -4 dy Adx 

D,x = 1 +pxDx D,x = qxD, D*Y = q-'yDx 

Dyy = 1 + ryDy DID, = sD,Dx 
where p, q, r E C and 

Family I& 

XY = qyx 
x dx = s d x x  

y dY = s dYY 
D,x = 1 + sxD, + (s  - I)yD, 

Dyy = 1 + syD, 

x dy = (s  - 1) d x y + q  dy x 
dx A dy = -4s-I dy A dx 

y dx = sq-' dxy  

Dxy = qxDy Dxy = sq-'yDx 
DxDy = qs-'DyDx 

where q, s E C and 

An immediate possibility of introducing a complex structure in Manin's plane lies 
in putting z = x + iy, Z = x - iy, and making all parameters real. This converts Manin's 
plane into the complex quantum plane C,. It is now possible to introduce a set of 
quantum holomorphic functions K(C,), given by the quantized Cauchy-Riemann's 
equation D,H(x, y) = -iDyH(x, y) for any H(x, y)  E X(C,). This equation is explicitly 
solved in both cases in [l]. Solutions of Cauchy-Riemann's equations show that 
quantum holomorphicity does not mean that the holomorphic function can be represen- 
ted as the formal power series of one variable z. Moreover, the set %(e,) is an algebra 
only in the first case when we put p = q and r = q-'. 
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There exists the possibility of another definition of the complex structure on Manin's 
plane [l,  121. We observe that C p  admits *-algebra structure (* is an antilinear 
involution) if q is real and x* = y.  The algebra SP becomes an involutive algebra when 
it is defined by the multiplication rules I, p is real and r = p - ' .  This observation suggests 
the consideration of the quantum complex variable 5 = x, and its complex (Hermitian) 
conjugation 5* = y. (Note that this *-structure is not compatible with the coproduct A, 
defined above-compare, for example: [ 1 1 J  In fact C: is a quantum space and does 
not demand bialgebra structure.) Now the equations (family I) take the following form: 

a* = q r l  

De5 = 1 + PCQ Dg5* = q-'[*D, DeDp 4 4 . 4  ( 1 )  

Dc d l  = p-' d5 Dl De d l*  = q-' d[* D t 

(d5)* = dC* (D , )*=-P-~D, . .  

5 dC = p d5C 5 d5*= d5* 5 d5n d5*= -4 d[* ndb 

In this paper we shall deal with this last definition of the quantum complex 
plane-4; (C: is also called 161 an algebra of polynomials on the Euclidean quantum 
plane). C: has some interesting properties. First of all, the set of all holomorphic 
functions a(@:), forms an algebra and every holomorphic function can be written as 
a formal power series of one variable 5. This last statement follows immediately from 
the definition of a holomorphic function (a function h(3; C*) E @: is holomorphic if 
dh( 5, 5*) = d5 h(  5, [*) i.e. De.h(5, C*) = 0. 

3. The q-integration 

In this section we use the following notation:f(b) =Xfn5",f(5*) = X f.f", wheref. E @. 
Let us look first for the passibility of a definition of the inverse operation for the 

derivative Dc, i.e.the @-linearoperation1'.'dL: @:, --f C:,snch that D c { Y  dCf(l'))} = 
f(C) (analogously we can look for the @-linear operation I"" dg*: C:, - C t  such that 
D t y { P  d[*f([*)} =f((5*)). It is enough to restrict ourselves to the monomials 
5". (5'"). n EN, and then we find immediately that 

where [ n ] , - ( l - p " ) / ( l - p ) .  
A similarkind ofintegration for a commutariue variable with the deformed derivative 

differential calculus in our case) was introduced in [3]. However, the integration 
considered in [ 3 ]  loses its meaning for p + -1, which is simply related to the fact that 
the inverse operation to the Grassmanian derivative does not exist. At least for this 
reason it is more convenient to define an analogue of the definite integral, i.e. a linear, 
continuous functional over elements of our involutive algebra. We propose the following 

(Ganss' ( J a c h d s )  dedv2tive, ;%+lick! is simp!y I conse",uence af the definitia!! nf the 
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definition: 
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where a, ,3 E C. Functional jt)hq8, d55" can be interpreted as the first of the integrals 
(2)takeninthelimit~~[(l+p)/Z~p~"~]"~,(1[(1 +p)/Zlp1'/2]1/2. Wecanalsoobservethat 

Equatio (6) and (7) show that the @-integral is eauiva 

for n = 1 
for n # 1 .  

It to Riemanr 

(7) 

- tegral 
if p = 1, and that it behaves like Berezin's integral if p = -1.  For this reason we can 
define a class of definite integrals taking as limits (see (3) and (4)) p[(1 +p)/Z]'l'y,( p), 
a[(l+p)/2]"2y2(p), where ri(l) = 1 and ~ ~ ( - 1 )  = 1, i = 1 , Z .  This is strictly related to 
the fact that we cannot put P as a q-variable and then interpret a definite q-integral 
as a q-function. We put y , ( p )  = Ip1"2 for simplicity. 

Note also that our integral, except for linearity, satisfies 

for any a, 8, y E C,  so 

P.9 jp,q [ . ] = - I  [ . I .  
[-.,PI 18,lrI 

It is easy to check that the *-operation is in agreement with (3) and (4), i.e. 

With these preliminary definitions we can start to construct a q-like integral along 
the path. From now on we will reserve the symbol z for the complex variable, and the 
symbol 5 for the q-complex variable. Let r be any path in C. We propose the following 
definition of the q-integral 'along the path r': 
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Let D now be a domain in C. We define 

The definitions above suggest the following. 
Prescription for q-integration: 
(i) Integration along a path. 

Take any quantum one-form dCf(J, J*) =Pm,mfnm dll"5*'", and a path Tc C. 
Define the classical one-form, 

and finally calculate I:" d5 f(6, C*) =I, dz F ( z ) .  
(ii) *-integration along a path. 
Take any quantum one-form d(* f ( J * ,  C ) = Z , , , f , ,  dC*[*"J"', and a path TcC. 

Define the classical one-form, 

and finally calculate dl*f(p*, C) = J r d i F ( i ) .  
jiiij integration in a domain. 
Take any quantum two-form d( A dC* g(C, C*) = Z, ,  g., dg" I*" and a domain 

D c C .  Define the classical two-form, 

dzndiG(z , f )  

-L,-.L,t,-L,x,, n + 1  m + l  - q.. , ~... , .,I.. , .,,-- - 
[n+11, [ m + l l l / ,  

and finally calculate E d[ A dg* g( <, l*) =I, dz A d l  G( z, i). 

i.e. if D c C is a domain, aD is a boundary of D and w ( l , l * )  is a one-form, then 
Finally we want to note that the integration defined above obeys Stokes' theorem, 

1: w(iC*)=JIdw(bC*).  (14) 
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4. Quantum Cauchy's theorems 

Let C. be a circle z2 = a, and p > 0, then 

T Brzezinski and I Rembielinski 

(16a) 

(1%) 

For the special case n + 1 = m = 1 and a = 1 these equations reduce to 

where r is a circle Iz - a1 = r and f(l) is a quantum holomorphic function such that 
the function F ( a )  defined by (13) (m =0) is holomorphic in a simply connected open 
domain r. 

Now it is possible to give the quantized version of (the local) Cauchy's theorem. 
Let f(5) be any quantum holomorphic function, f(5) = X n i 0  f.l", and n be a domain 
in C such that F ( s )  (given by (13)) is continuous in and the series 

1 L(-) l + p  n'2 f" > Z "  

" = I  [nl, 21Pl"2 
is absolutely convergent in a. Then 

for any closed road r c n. 
Using the prescription for q-integration (13) one can easily give a quantum version 

of Cauchy's global theorem, i.e. if f(5) is a quantum holomorphic function and nc C 
is a simply connected domain such that the function F ( z )  (given by (13)) is analytic 
in cl(CL), then 

[rp'q d l f ( l )  = O  (20) 

for any closed road r c n. 

domain. Let D c C be a domain. The number 
Finally, we can define the quantum analogue of the square measure of a (flat) 

is called a quantum square measure of D. 
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Let us briefly discuss the invariance of the measure / . I p q .  Consider the quantum 
group of motions on Manin's plane IS0(2), [12]  generated by the matrix 

[; :* "1 (22) 
0 0  I 

with defining relations 

a a * = a * a = 1  uu* = qu*u au = qua 

and natural hialgebra structure 

A(g!=g@g 

& ( a ) =  1 E ( U ) = O  

S ( a )  = a* 

h!u) = a @ U + U @ I 

S ( u )  = -a*u. 

If we define the following comodule action 6 :C t  - IS0(2) ,0@,*  

then we can obtain that I ' I p s  is invariant under action of 6. 

square measure of D. 
It is easy to verify that lDlpq = 1q/pll'2[(l +p)/2]1DI where ID1 denotes a classical 

5. Conclusions 

WC: 11d"G Jiruwn ,U*, I, ,a pU""1ule I" C U I I ~ L I U C ,  Ulr q I Y P L . L " L 1 L  P,LP1"6"b ", P C.CLII,CP, 

complex integral, which has classical and Grassmannian limits. Our definition was 
motivated by practical reasons, and it can be used in the analysis of coherent states, 
and in the construction of Bargmann's space. This work is supported by KBN Grant 
2021891 01. 
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